
主讲教师：汪红松

数据结构
（C语言版）（第2版）

图

教 学 内 容

1

2

3

4

5

图的定义和基本术语

图的存储结构

图的遍历

图的应用(1)

图的应用(2)

Contents

图的遍历

遍历实质

找每个顶点的
邻接点的过程

图的特点

图中可能存在回路，
且图的任一顶点都可
能与其它顶点相通，
在访问完某个顶点之
后可能会沿着某些边
又回到了曾经访问过
的顶点。

遍历定义

从已给的连通图中某
一顶点出发，沿着一
些边访遍图中所有的
顶点，且使每个顶点
仅被访问一次，就叫
做图的遍历，它是图
的基本运算。

图常用的遍历：

解决思路：设置辅助数组 visited [n]，用来标记每个被访
 问过的顶点。

ü 初始状态为0

ü i 被访问，改 visited [i]为1，防止被多次访问

怎样避免重复访问？

ü深度优先搜索 ü广度优先搜索

基本思想：——仿树的先序遍历过程。

v1

v1

v2 v3

v8

v7v6v4 v5

DFS 结果
→ → → →
→ → →

v2 v4 v8
v5 v3 v6 v7

起点

深度优先搜索(DFS － Depth_First Search)

深度优先搜索的步骤

简单归纳：

访问起始
点v;

若v的第1个
邻接点没访
问过，深度
遍历此邻接
点；

若当前邻接
点已访问过，
再找v的第2
个邻接点重
新遍历。

讨论1：计算机如何实现DFS？

DFS 结果
2

1

3

4

5
6

2→1→3→5→4→6

讨论1：计算机如何实现DFS？

0
0
0
0
0
0

1
2
3
4
5
6

0
1
0
0
0
0

1
1
0
0
0
0

1
1
1
0
0
0

1
1
1
0
1
0

1
1
1
1
1
0

1
1
1
1
1
1

邻
接
矩
阵
A

辅助数组 visited [n]

1 2 3 4 5 6
1 0 1 1 1 0 0
2 1 0 0 0 1 0
3 1 0 0 0 1 0
4 1 0 0 0 0 1
5 0 1 1 0 0 0
6 0 0 0 1 0 0

2→1→ 3→ 5→ 4→ 6

void DFS(AMGraph G, int v){ //图G为邻接矩阵类型
 cout<<v; visited[v] = true; //访问第v个顶点
 for(w = 0; w< G.vexnum; w++) //依次检查邻接矩阵v所在的行
 if((G.arcs[v][w]!=0)&& (!visited[w]))
 DFS(G, w);
 //w是v的邻接点，如果w未访问，则递归调用DFS
}

讨论2：DFS算法如何编程？

—用递归实现遍历算法

讨论3：在图的邻接表中如何进行DFS？

v0 → v1 → v2 → v3
DFS 结果

0
0
0
0

0
1
2
3

辅助数组 visited [n]

1
0
0
0

1
1
0
0

1
1
1
0

1
1
1
1

—借用visited [n]！

起点

0

1

2

3

讨论4：邻接表的DFS算法如何编程？

void DFS(ALGraph G, int v){ //图G为邻接表类型
 cout<<v; visited[v] = true; //访问第v个顶点
 p= G.vertices[v].firstarc; //p指向v的边链表的第一个边结点
 while(p!=NULL){ //边结点非空
 w=p->adjvex; //表示w是v的邻接点
 if(!visited[w]) DFS(G, w); //如果w未访问，则递归调用DFS
 p=p->nextarc; //p指向下一个边结点
 }
}

——用递归实现遍历算法

用邻接矩阵来表示图，遍历图中每一个顶点都要从头
扫描该顶点所在行，时间复杂度为O(n2)。

用邻接表来表示图，虽然有 2e 个表结点，但只需扫
描 e 个结点即可完成遍历，加上访问 n个头结点的时
间，时间复杂度为O(n+e)。

结论：
稠密图适于在邻接矩阵上进行深度遍历；
稀疏图适于在邻接表上进行深度遍历。

DFS算法效率分析

基本思想：——仿树的层次遍历过程

广度优先搜索(BFS － Breadth_First Search)

v1

v1

v2 v3

v8
v7v6v4 v5

BFS 结果

→ →
→
→v2 v3

→v4 v5 →v6 v7→v8

起点

简单归纳：

ü 广度优先搜索是一种分层的搜索过程，每向前走一步可
能访问一批顶点，不像深度优先搜索那样有回退的情况。
ü 因此，广度优先搜索不是一个递归的过程，其算法也不
是递归的。

广度优先搜索的步骤

在访问了起始点v之后，依次访问 v的邻接点；

然后再依次访问这些顶点中未被访问过的邻接点；

直到所有顶点都被访问过为止。

讨论1：计算机如何实现BFS？

邻接表

—除辅助数组visited [n]外，还需再开一辅助队列
起点

辅助队列

v2已访问过了

BFS 遍历结果

入队！

void BFS (Graph G, int v){

 //按广度优先遍历连通图G

 cout<<v; visited[v] = true; //访问第v个顶点

 InitQueue(Q); //辅助队列Q初始化，置空

 EnQueue(Q, v); //v进队

 while(!QueueEmpty(Q)){ //队列非空

 DeQueue(Q, u); //队头元素出队并置为u

 for(w = FirstAdjVex(G, u); w>=0; w = NextAdjVex(G, u, w))

 if(!visited[w]){ //w为u的尚未访问的邻接顶点

 cout<<w; visited[w] = true;EnQueue(Q, w); //w进队

 }//if

 }//while

}//BFS

【算法描述】

如果使用邻接矩阵，则BFS对于每一个被访
问到的顶点，都要循环检测矩阵中的整整一
行（ n 个元素），总的时间代价为O(n2)。

用邻接表来表示图，虽然有 2e 个表结点，但
只需扫描 e 个结点即可完成遍历，加上访问
n个头结点的时间，时间复杂度为O(n+e)。

BFS算法效率分析

小结

1. 图的深度优先遍历方法和广度优先遍历方法
2. 针对图的邻接矩阵和邻接表两种存储结构分别实现了上

述两种不同的遍历算法
3. 分析了不同存储结构图的遍历算法的时间复杂度

